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Canonical Momentum for the Lorentz Force

For a conservative force, the work done by the force in moving from point P1

to point P2 is independent of the path taken:

∫ P2

P1

~F · d~r is invariant,

or more succinctly
∮

~F · d~r = 0 (1.1)

from which by use of Stoke’s theorem we get in differential form

∇× ~F = 0. (1.2)

From basic mechanics we learned that forces which only depend on position and

not the velocity of the particle being worked upon are conservative. Examples of

such forces are those from gravitational and static electric fields. When there are

magnetic fields present the Lorentz force can depend on velocity:

d~p

dt
= ~F = q( ~E + ~v × ~B), (1.3)

and is not always conservative. Taking the curl of the Lorentz force yields:

∇× ~F = ∇× d~p

dt
= q(∇× ~E + ∇× (~v × ~B))

= −q ∂
~B

∂t
+ q

[

( ~B · ∇)~v − (~v · ∇) ~B + (∇ · ~B)~v − (∇ · ~v) ~B
]

= −q ∂
~B

∂t
− q

[

(~v · ∇) ~B
]

= −q
[

∂ ~B

∂t
+
∂ ~B

∂x

dx

dt
+
∂ ~B

∂y

dy

dt
+
∂ ~B

∂z

dz

dt

]

= −q d
~B

dt

= −d
dt

(∇× q ~A). (1.4)

1



2 Supplementary Notes for Accelerator Physics (IU/USPAS P570A)

Moving terms to the left side produces

∇× d~p

dt
+
d

dt
(∇× q ~A) = 0, (1.5)

which after reordering the differentiation becomes

∇×
[

d

dt

(

~p+ q ~A
)

]

= 0. (1.6)

If we define a new canonical momentum by

~P = ~p+ q ~A, (1.7)

then the corresponding canonical force

~Fcan =
d~P

dt
(1.8)

is conservative.
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Alternative Derivation of Eq. (CM: 3.75)

In going from Eq. (3.60) to Eq. 3.75 of Conte and MacKay1, I have not been

quite rigorous enough in applying the canonical transformation; hence it was neces-

sary to use a bit of hand waving to add an extra term of +1 to the dz/ds equation

in Eq. (3.75). When we are more careful with the canonical transformation, we find

that the Hamiltonian in Eqs. (3.64 and 3.72) must have an additional term of +δ.

Eq. (3.60) may be rewritten using the paraxial approximation as

H1(x, x
′, y, y′, t,−U/p0; s) = − q

p0
As −

(

1 +
x

ρ

)

√

(

U

p0c

)2

−
(

mc

p0

)2

− x′2 − y′2.

We would like to transform to a Hamiltonian

H(x, x′, y, y′, z, δ; s) = H1(x, x
′, y, y′, t,−U/p0; s) +

∂F2(t, δ; s)

∂s
,

where F2 is a generating function for the canonical transformation (See Appendix

C.) with

z =
∂F2

∂δ
, and − U

p0
=
∂F2

∂t
.

Since

δ =
∆p

p0
=

U2
0

p2
0c

2

∆U

U0
=

1

β2
0

∆U

U0
,

the relation between U
p0

and δ is

U

p0
=
c

β
(1 + β2δ).

A good candidate for the generating function is

F2(t, δ; s) =
U

p0
(t0 − t) − s

β2
0

=
c

β0
(1 + β2

0δ)(t0 − t) − s

β2
0

=
c

β0
(1 + β2

0δ)

(

s

v0
− t

)

− s

β2
0

,

3
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since s = v0t0. Evaluating for z then gives

z = s− v0t,

as shown in Eq.(3.63). The additional term missing from Eq. (3.72) is then

∂F2

∂s
= δ.

Thus we see that a more careful treatment leads to the desired answer without the

extra hand waving.

References for Chapter 2

[1] M. Conte and W. W. MacKay, An Introduction to the Physics of Particle

Accelerators, World Scientific, Singapore (1991).
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Transverse Position Measurement

The most common method for measuring the transverse position of the a

bunched beam is to sense the electric field with capacitive pickups. As the bunch

travels down the beam pipe, image charges move along the inner surface of the pipe.

(Here I am of course assuming that the beam pipe is made of metal.) From Gauss’

law it is easy to see that the total charge moving along the pipe must be equal but

of opposite sign to the charge in the bunch.

C D

BA

Figure. 3.1 Concept of a dual plane beam-button position monitor. The signals from each button

are brought out to the readout electronics via high quality coaxial cables. Here the buttons have

been placed as in a synchrotron light source to keep them out of the band of synchrotron radiation

in the midplane.

One type monitor employs button shaped electrodes to sense the electric field

strength at the surface of the chamber as shown in Fig. (3.1). Buttons are particu-

larly used when the bunches are short as in electron accelerators. The short length

of the electrode can limit the amount of induced charge if the bunches are longer

than the radius of the button.

When the bunches are longer as in hadron accelerators, longer stripline elec-

trodes are frequently used. Fig. (3.2) shows a shorted stripline monitor with a

measured signal from the lower stripline.

5
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Filter
<20MHz

- - - - --

- - - - --

Scope Splitter

+ ++ +

Raw signal from stripline

Filtered signal
Funky looking
trigger pulse

Figure. 3.2 Concept of a stripline beam position monitor. Induced currents on the wall are picked

up on coaxial cables by using a small gap at the end of the stripline. The capacitive nature of such

a pickup differentiates the bunch current. On the right are measurements of a fully stripped gold

bunch passing through a stripline position monitor after being extracted from the AGS. As can be

seen, there was quite a bit of structure in the bunch. (This was taken early in the commissioning of

the extraction system.)

λ
x

y

θ
b

a
A

-Rλ

Figure. 3.3 Equipotential surface with line of charge density λ at radius a and an image line of

charge of density −Rλ at radius A.

An estimate of the charge density on the inner surface of a cylindrical beam

pipe of radius b can be made by treating the bunch as a line of charge of density λ

at a distance a from the center of the pipe. Ignoring the pipe, a second line of image

charge (line density: −Rλ) can be placed parallel to the beam but at a distance A

from the origin. We solve for distance A and the ratio R to have an equipotential

surface on a cylinder of radius b. The equation for the potential lines of charge is

then

V =
λ

2πε0

[

ln
(

√

(x− a)2 + y2
)

− R ln
(

√

(x− A)2 + y2
)]

+ V0. (3.1)
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Rearranging terms produces

2πε0
λ

(V − V0) =
1

2
ln

(x− a)2 + y2

[(x−A)2 + y2]R
. (3.2)

After exponentiating, we may define

α = e
4πε0

λ
(V−V0) =

(x− a)2 + y2

[(x−A)2 + y2]R
. (3.3)

In order to have a cylindrical equipotential surface, we must have a quadratic equa-

tion, so R = 1, and

(x− a)2 + y2 = α[(x− A)2 + y2].

Since the potential at (x, y) = (b, 0) must be the same as at (x, y) = (0, b), we can

write

α =
(b− a)2

(A− b)2
=
a2 + b2

A2 + b2
. (3.4)

Solving for A gives the nontrivial answer

A =
b2

a
.

(The other root is A = a which just cancels the charge at x = a.) Transforming to

polar coordinates (x = r cos θ, y = r sin θ) and evaluating the radial component of

electric field at r = b gives

Er(r = b, θ) = − λ

2πε0

[

b2 − a2

b(b2 + a2 − 2ab cos θ)

]

. (3.5)

Since the field is zero inside the conductor, the surface on the inner wall of the beam

pipe must be

σ(θ) = ε0E⊥ = − λ

2π

[

b2 − a2

b(b2 + a2 − 2ab cos θ)

]

. (3.6)

Now the charge per length on a stripline subtending the arc from θ1 to θ2 (See

Fig. (3.4).) obtained by integrating

dq

dz
= − λ

2π

∫ θ2

θ1

[

b2 − a2

b(b2 + a2 − 2ab cos θ)

]

dθ

=
λ

π
tan−1

[(

b+ a

b− a

)

tan
θ

2

]
∣

∣

∣

∣

θ2

θ1

. (3.7)
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C3

C2

C1

C4
1θ

θ2

Figure. 3.4 Definition of angles of integration for stripline “C4”.

For the opposite plate we can reverse the sign of a. The voltage induced across

the coaxial cables will be proportional to the dq/dz on the stripline. To go further

requires either a lot more algebra or invocation of a symbolic calculator such as

MAPLE3. To first order in x/b we get

V1 − V2

V1 + V2
= 4

sin α
2

α

x

b
+ O

(

x3

b3

)

+ O
(

xy2

b3

)

. (3.8)

where α = θ2 − θ1, and we have replaced a by x. A somewhat more linear formula

comes from

ln
V1

V2
= 8

sin α
2

α

x

b
+ O

(

x3

b3

)

+O
(

xy2

b3

)

. (3.9)

As an example, assume that the striplines subtend an angle of α = 70◦ (θ1 =

−35◦, θ2 = 35◦) and a radius for the striplines of b = 56.5 mm, then we get to first

order from Eq. (3.8): Fig. (3.5) shows typical signals from the four plates of a dual

plane stripline with above dimensions.

C1

C2

C3

C4

C3

C2

C1

C4

Figure. 3.5 Filtered signals from all four striplines of a two plane position monitor. The relative sizes

of the voltages show that the beam was slightly down and to the right as indicated in the picture

on the right. The positions were calculated using Eq. (3.9).
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The accuracy of relative position measurements in a circular accelerator with

a stripline monitor can be better than 10 µm when the signals are averaged over

several turns.

References for Chapter 3

[1] R. E. Shafer, “Beam Position Monitoring”, AIP Conf. Proc. 212, p. 26, New

York (1990).

[2] R. E. Shafer, “Characteristics of Directional Coupler Beam Position

Monitors”, IEEE Trans. on Nucl. Sci., Vol. NS-32, #5 p. 1933 (1985).

[3] B. W. Char et al., Maple V First Leaves: A Tutorial Introduction

Springer-Verlag, New York (1992)
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Schottky Signals

4.1 Coherent frequency spectra of bunched beams

4.1.1 A single Gaussian bunch

A Gaussian bunch of total charge q passing a pickup at location s will have a

longitudinal profile

dQ(s, t) =
q√

2πσs
e

−(s−vt)2

2σs ds, (4.1)

where σs is the rms width of the distribution. The distribution of current passing

the pickup is then

i(t) =
dQ

dt
= v

dQ

ds

=
qv√
2πσs

e
−(s−vt)2

2σs

=
q√

2πσt
e

−(t−t0)2

2σt , (4.2)

where t0 = s/v. For the following discussion, we will place the pickup at s = 0,

so t0 = 0. The harmonic content of the signal may be found from the Fourier

transform† of the current:

ı̂(ω) =
q√

2πσt

∫ ∞

−∞

e−jωt e
− t2

2σ2
t dt,

=
q√

2πσt
e−

σ2
t

ω2

2

∫ ∞

−∞

e
−

(t+jσ2
t

ω)2

2σ2
t dt,

= q e−
σ2

t
ω2

2 . (4.3)

So we find that the Fourier transform of a Gaussian distribution is again Gaussian

with an rms width of σω = 1/σt. In the limit of an infinitesimally short bunch the

† Here I have used the engineering convention of j =
√
−1 to minimize confusion

with the current i.

10
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Gaussian distribution becomes

i(t) = lim
σt→0

q√
2πσt

e−
t2

2σt = q δ(t), (4.4)

and the spectral content becomes flat

ı̂(ω) = q

∫ ∞

−∞

e−jωt δ(t) dt = q. (4.5)

4.1.2 Circulating bunches

The bunched beam current in a circular accelerator of circumference L with

Np equally spaced bunches may be approximated by

i(t) =
∞
∑

n=−∞

Np
∑

m=1

∫ ∞

−∞

Qm(t′) δ

(

t− t′ − nmL

Npv

)

dt′, (4.6)

where Qm(t′) = dqm/dt
′ is the longitudinal profile of charge in the mth bunch. The

frequency spectrum may be obtained from the Fourier transform of the current:

ı̂(ω) =

Np
∑

m=1

∞
∑

n=−∞

∫ ∞

−∞

∫ ∞

−∞

e−jωtQm(t′) δ

(

t− t′ − nmL

Npv

)

dt′ dt,

=

Np
∑

m=1

∞
∑

n=−∞

Q̂m(ω) exp

(

−j nmL
Npv

ω

)

. (4.7)

When the bunches are identical this becomes:

ı̂(ω) = Q̂(ω)
∞
∑

n=−∞

exp

(

−j nL
Npv

ω

)

=
Q(ω)

Npωs

∞
∑

n=−∞

δ (ω − nNpωs) (4.8)

with ωo = 2πv/L being the angular revolution frequency.

If we approximate the bunch shape by a delta function, then the spectrum will

have a “comb”-shape as shown in Fig. (4.1).

i(  )ω

2π
τ

i(t)

t

τ

ω
Figure. 4.1 The left plot shows the current distribution for equal δ-function bunches of charge

Qm(t′) = qδ(t′)) and spacing τ = L/Npv. The right plot shows the corresponding Fourier

transform.
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0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

ω [×109 radian/s]

i(
ω
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i(

0)

Figure. 4.2 Relative frequency of equal Gaussian bunches with 106.6 ns spacing between bunches.

If we now allow a gap in the number of bunches so that only Nb bunches are

placed with the same spacing leaving Np −Nb holes in the bunch train, we should

expect to see additional harmonics of the revolution lines between those of Eq. (4.8).

Consider Nb bunches of equal charge q and width σ placed in Np equally spaced

buckets:

i(t) =
∞
∑

n=−∞

Nb
∑

m=1

∫ ∞

−∞

∫ ∞

−∞

e−jωt
q√
2πσ

e−
t′

2

2σ2 δ

(

t− t′ − nm

Np
τs

)

dt′dt. (4.8)

The frequency spectrum is then

ı̂(ω) = qe−
σ2ω2

2

∞
∑

n=−∞

Nb
∑

m=1

∫ ∞

−∞

e−jωt δ

(

t− nm

Np
τs

)

dt

= qe−
σ2ω2

2

∞
∑

n=−∞

Nb
∑

m=1

e
−j

nmωτs
Np

= qe−
σ2ω2

2

∞
∑

n=−∞

e
−j

nωτs
Np

1 − e
−j

nNbωτs
Np

1 − e
−j

nωτs
Np

= qe−
σ2ω2

2

∞
∑

n=−∞

e
−j

nωτs
Np

e
−j

nmωτs
2Np

e
−j

nωτs
2Np

2j

(

e
j

nNbωτs
2Np − e

−j
nNbωτs

2Np

)

2j
(

e
j

nωτs
2Np − e

−j
nωτs
2Np

)
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Figure. (4.3) Plot of the enhancement function times the envelope exp(−σ2ω2/2) for Np = 120,

Nb = 110, τs = 12.7 µs. The envelope function is plotted to guide the eye. The enlargement on

the right shows the ripple caused by the gap of 10 missing bunches at a frequency of 78 kHz.

= qe−
σ2ω2

2

∞
∑

n=−∞

sin
(

nNbωτs

2Np

)

sin
(

nωτs

2Np

) e
−j

n(Nb+1)ωτs
2Np

The modulation factor, called the enhancement function, is

En(ω) =
sin
(

nNbτs

2Np
ω
)

sin
(

nτs

2Np
ω
) . (4.9)

From this we see that having an irregular pattern of bunches will produce more

closely spaced lines separated by the revolution frequency (1/τs) which is smaller

than the typical bunch frequency (Np/τs). Other enhancement factors can be cal-

culated for bunches of differing intensity or with more gaps between bunch trains.

4.2 Momentum spread

So far we have assumed that the particles are all oscillating at the same fre-

quency. In fact any real beam has a nonzero momentum spread, and unless we

have an isochronous ring, there will be a spread in the revolution frequencies of

the individual particles. In the case of beams bunched by rf cavities, there will be

synchrotron oscillations with each individual particle having a varying revolution

period.
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4.2.3 Longitudinal Schottky spectrum of an unbunched beam

The current of the mth particle can be written as

im(t) = qfm

∞
∑

n=−∞

ejn[ωmt+ψm]

= qfm

[

1 + 2

∞
∑

n=1

cos[n(ωmt+ ψm)]

]

(4.10)

where fm = ωm/2π and ψm are the respective revolution frequency and phase of

the particle.

Averaging over N particles in the beam the rms frequency spread of the nth

revolution harmonic of the synchronous particle’s frequency fs will be the absolute

value of

harmonic bandwidth = nσf = nfs |ηtr|
σp
p
, (4.11)

where we recall that the phase slip factor was defined in Ref. [2] as

ηtr =
1

γ2
− 1

γtr
2
. (4.12)

The total average current for a large number of particles is

〈i〉 =
N
∑

i=1

im(t) = Nq〈f〉 = Nqfs, (4.13)

which is just the dc component of the current. The rms component of current may

be found from

σ2
i =

〈

(i− 〈i〉)2
〉

=

〈[

N
∑

m=1

qfm

(

1 + 2
∞
∑

n=1

cos(nωmt+ ψm)

)

−Nqfs

]2〉

= 2q2f2
sN. (4.14)

So the rms current component is then

σi = qfs
√

2N, (4.15)

which is independent of harmonic number. The bandwidth is however proportional

to the number n of the revolution harmonic as given by Eq. (4.11) and indicated in

Fig. (4.4).
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Figure. 4.4 Plot of first six revolution harmonics. (I have exaggerated the momentum spread so that

the widths can be seen.) Note that the area under each peak (i.e., peak times width) is constant.

4.2.4 Synchrotron oscillations of a single particle

For simplicity, consider only a single particle which is now undergoing a small

synchrotron oscillation. This modulates the arrival time at the detector as

t→ t+ a sin(Ωst+ ψ), (4.16)

where a (� τs) and ψ are respectively the amplitude and phase of modulation. The

current seen by the detector on the nth-turn is then

in =
∞
∑

n=−∞

q δ (t− n [τs + a sin(Ωsnτs + ψ)])

' q

τs

∞
∑

n=−∞

ejnωs[τs+a sin(nΩsτs+ψ)], (4.17)

where we have made use of the identity

∞
∑

−∞

δ(t− nτ) =
1

τ

∞
∑

−∞

ej
n2πt

τ . (4.18)

Recalling another identity

ejz sin θ =
∞
∑

m=−∞

Jm(z) ejθ, (4.19)

we may now write

in = q

∞
∑

n=−∞

e−jnωsτs

∞
∑

m=−∞

Jm(nωsa) e
−jm(nωsτs+ψ). (4.20)
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Now each revolution harmonic gets split into a sequence of synchrotron satellites of

relative height Jm(a) for themth satellite. Since Jm(nωsa) decreases with increasing

m only the nearest lines are important. As a rule of thumb, lines with m>∼n 2aωs
are negligible1.

Figure. 4.5 Longitudinal spectrum showing synchrotron sidebands of a high order revolution line in

RHIC. The pickup was a small Schottky cavity with a resonant frequency near 2 GHz. The signal

was mixed down to the lower range of the spectrum analyzer. The peak in the middle is a revolution

line of infinitesimal width, although the spike as measured does not go to infinity due to the finite

bandwidth of the analyzer. The characteristic shape of the sidebands, as having a sharp edge away

from the revolution line with a sloping fall towards the revolution line, is due to the fact that the

synchrotron frequency is a maximum at the center of the bucket, where the particle distribution also

peaks, and then falls off toward the edge of the bucket.

4.3 Transverse Schottky spectra

4.3.5 Transverse spectrum of an unbunched beam

Again we first consider a single particle with a betatron oscillation in one plane.

Here we must use a transverse pickup which is sensitive to the amplitude am of the

oscillation. The measured signal is then proportional to the dipole oscillation signal

dm = am(t)im(t), (4.21)

for the mth particle. We immediately see that the signal is proportional to both

the amplitude of oscillation and to the current of the bunch, so in addition to the
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effect of betatron oscillations, transverse spectra may also exhibit aspects of the

longitudinal spectra. For the betatron oscillation we have

am(t) = am cos(qmωmt+ ψm), (4.22)

where qm is the fractional part of the betatron tune, and ωm/2π and ψm are re-

spectively the particle’s revolution frequency and betatron-phase offset. Eq. (4.21)

now becomes

dm(t) = am cos(qmωmt+ ψm) qfm

∞
∑

n=−∞

ejnωmt

=
qamfm

2

(

ej(qmωmt+ψm) + e−j(qmωmt+ψm)
)

∞
∑

n=−∞

ejnωmt

=
qamfm

2

∞
∑

n=−∞

(

ej[(n+qm)ωmt+ψm] + ej[(n−qm)ωmt−ψm]
)

=
qamfm

2

∞
∑

n=−∞

(

ej[(n+qm)ωmt+ψm] + e−j[(n+qm)ωmt+ψm]
)

= qamfm

∞
∑

n=−∞

cos[(n+ qm)ωmt+ ψm]. (4.23)

So the spectrum will have lines spaced like the revolution harmonics but offset by

an amount qmfm. Since we cannot tell the difference between negative and positive

frequencies, the negative frequencies fold over to give lines at (n± qm)fm as shown

in Fig. (4.6).

0f 0f2 0f3 0f 0f

md
0f

0f

0 4 5

(1+q  )m

-(-1+qm)

Figure. 4.7 Spectrum of betatron lines. The dashed lines are folded over from negative frequencies

by plotting the absolute value |(n+ q)fs|. Here I have plotted lines for q < 0.5.
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Summing over N particles we get the total average transverse signal

〈d〉 = 0, (4.24)

with the rms spread

σd =
√

〈(dm − 〈dm〉)2〉 = qfs σa

√

N

2
, (4.25)

where σa is the rms betatron amplitude. The Schottky power in each sideband is

proportional to σ2
d and is again independent of the revolution harmonic number n.

Comparing Eqs. (4.15 & 4.25) we see that the rms betatron amplitude may be

obtained from

σa =
2σd
σi

. (4.26)

If the detectors are very well calibrated, then this can be used to obtain the trans-

verse emittance.

The momentum spread and betatron tune spread contribute to give a nonzero

width to the betatron line. If the betatron tune spread is only due to chromaticity,

then

σq = |(n+ q)ηtr +Qξ| σp
p
, (4.27)

where Q is the total betatron tune (including integer part) and ξ is the chromaticity

ξ =
p

Q

dQ

dp
. (4.28)

Other contributions to the betatron tune spread which are not chromatic should

be added in quadrature with Eq. (4.27), since they would be independent of the

momentum oscillation.

For large values of n, the fractional part of the tune becomes negligible and the

width of the band is

σq ' |nηtr +Qξ| σp
p
, (4.29)

We now see that the widths of the upper and lower sidebands are different since n

can be either positive or negative. Whether the upper is narrower or wider depends

on the signs of ηtr, n, and ξ.
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4.3.6 Transverse spectrum of a single bunch

As alluded to in the previous section, the transverse oscillation in Eq. (4.21) is

modulated by the bunch current, so we should expect to see the additional struc-

ture of the longitudinal spectra superimposed on the betatron lines of the previous

section.

Due to a lack of time, I will defer the development of this section to the fu-

ture. There is probably more in this chapter than we will cover in class anyway. I

recommend Boussard’s article1 for more information. I have added a few pictures

of Schottky measurements from RHIC showing the betatron sidebands.

Figure. 4.8 Transverse Schottky spectrum from RHIC. The middle rounded bump is generated by

the synchrotron sidebands which were not resolved by the bandwidth of the scope. The lower bumps

to either side are the betatron sidebands. Unfortunately, the program used to plot this did not label

the axes in physical units. The width of horizontal scale is about the revolution frequency, 78 kHz.

Figure. 4.9 Simultaneous Schottky signals measured for horizontal and vertical transverse motion in

both the RHIC rings.
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Figure. 4.10 Waterfall plot of transverse Schottky spectra of gold beam in RHIC during an energy

ramp. Time increases from the top to the bottom, and individual Schottky spectra measurements

are plotted horizontally. The thin straight line moving to the left (from upper right to lower left) is a

revolution line. The next broad lines to either side are betatron sidebands. At the lower right there

is just a hint of the next higher revolution line, with one of its corresponding betatron sideband lines.

Notice how the betatron sidebands are filamenting as beam is slowly lost. The other two faint lines

moving to the right are interference artifacts, probably from some signal leaking into the mixer.

Figure. 4.11 Transverse Schottky waterfall plot during another ramp showing a revolution line in the

center with two betatron sidebands. One can see that one sideband is broadening which indicates an

increase in chromaticity. Again the beam was lost before the end of the ramp. (At the top you can

see two revolution lines at the two edges. I’m not sure why the lines shift by half a revolution line

spacing about a sixth of the way down. Presumably the reference frequency to the mixer jumped. I

must investigate this. Perhaps it might be related to the phase jump at transition?) The horizontal

lines (bands) in the top half show that there was a lot of broad spectrum power in the beam which

is quite common, particularly before and just after transition.
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5

Leapfrog Integration of Equations of Motion

When we write simulation codes to integrate a system of equations of motion

like
dφ

dt
= αW (5.1a)

dW

dt
= −βφ, (5.1b)

where α and β are constants, things sometimes go awry. An obvious way to solve

this without computers is to write a second order differential equation:

d2φ

dt2
+ αβ φ = 0, (5.2)

with solutions which are sine-like or exponential depending on the sign of αβ. For

the case of ω2 = αβ > 0 we have

φ(t) = φ0 cos[ω(t− t0)],

which is periodic so that a particle traces out an ellipse in the (φ,W )-phase space.

We frequently resort to integrating by stepping through a pair of difference

equations. A simple naive approach may run into problems. First I will demonstrate

the incorrect method with what might appear at first to be a reasonable choice of

difference equations:

φn+1 = φn + αWn ∆t (5.3a)

Wn+1 = Wn − βφn∆t, (5.3b)

Writing them in matrix form we have
(

φn+1

Wn+1

)

=

(

1 α∆t
−β∆t 1

)(

φn
Wn

)

= M

(

φn
Wn

)

, (5.4)

where the

det(M) = 1 + αβ∆t2 6= 1 (5.5)

unless either α or β are zero. For ω2 = αβ > 0 this would give results with the

particle proceeding to larger amplitudes in phase space instead of tracing out an

ellipse. The resulting integration is nonsymplectic.

22
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φ

Wα ∆t = 0.1
β ∆t = 0.05

200 steps

φ

Wα ∆t = 0.1
β ∆t = 0.05

200 steps

Figure. (5.1) The plot on the left shows how the improper method causes a blowup of the oscillation,

whereas the plot on the write was tracked with the leap-frog method.

2
1+ 2

1+2
1φ φ φ

W W W2 3

21

1
Figure. 5.2 By integrating the variables so that the time steps hop over each other, we can obtain a

symplectic result.

If instead we consider Eqs. (5.1) as modeling the longitudinal motion in a

circular ring with a single rf cavity, then a convenient time step would correspond

to one turn with a long drift followed by a small thin-lens-type energy kick:

(

φn+ 1
2

Wn+1

)

=

(

1 0
−β∆t 1

)(

1 α∆t
0 1

)(

φn− 1
2

Wn

)

=

(

1 α∆t
−β∆t 1 − αβ∆t

)(

φn− 1
2

Wn

)

= M

(

φn− 1
2

Wn

)

,

with

det(M) = 1. (5.7)

This type of two-step integration where one variable is integrated (φn− 1
2
→

φn+ 1
2
) and then the other is integrated (Wn → Wn+1) is referred to as leap-frog

integration, since the time steps for the two variables are interleaved as indicated

by Fig. (5.2).
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Example of Coupled Bunch Instability

During one ramp of polarized protons in Yellow ring of RHIC, only one of

the two 28 MHz cavities for acceleration was being powered. The tuner for the

other cavity was detuned to a fixed frequency away from the proper frequency.

As the beam was accelerated from 24.3 GeV at injection to 100 GeV at storage

the revolution frequency shifts from frf,i = 28.1297 MHz to frf,f = 28.1494 MHz.

The normal harmonic number for the 28 MHz cavities is h = 360. At one point

in the ramp, the 358th harmonic of the revolution frequency crossed the resonant

frequency of the unpowered cavity initiating the multibunch instability shown in

Fig. (6.1).

Figure. 6.1 Coupled bunch instability in the RHIC Yellow ring during acceleration of polarized

protons. The 56 traces are the 55 bunches (plus one empty bucket) taken on one turn during

acceleration. The populate every sixth rf bucket starting from bucket 1 up to bucket 331. There is

a gap of 5 bunches (buckets 332-360) to leave room for the rise time of the abort kickers.

The bunched beam drives TM010 oscillations in the unpowered cavity. Each

bunch will see the wake of previous bunches and gain (loose) a little energy from

(to) the cavity depending on the relative phase of the wake oscillation when the

bunch crosses the gap. As a result there is a slight beating of frequencies of the two

cavities as indicated in Fig. (6.2).

25
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Figure. 6.2 Conceptual beating of the frequencies of the two cavities: [sin(2πhx) sin(2πh′x)].
Here the harmonic numbers h = 20 [sin(2πhx)] and h′ = 18 [0.5 sin(2πh′x)] were used

rather than 360 and 358, so that the individual cycles could be seen for the individual cavities.

Figure. 6.3 This shows the 55 bunches later in the acceleration ramp after the oscillations have

Landau damped.


